Math 3360 - Foundations of Algebra I Tutorial Assignment Sheet 1

- 1. Determine whether or not the following systems are groups:
 - (a) The set of rational numbers, \mathbb{Q} , with operation \star given by $a \star b = (a+b)/2$.
 - (b) The set of non-zero rational numbers, \mathbb{Q}^* , with operation \star given by $a \star b = (ab)/2$.
 - (c) The set of integers, \mathbb{Z} , under subtraction.
 - (d) The set $S := \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ under multiplication.
- 2. Determine whether or not the following sets are groups under addition and/or under multiplication:
 - (a) The set $O(2,\mathbb{R}) := \{ U \in GL(2,\mathbb{R}) \mid U^{-1} = U^t \}.$
 - (**b**) The set $S := \{A \in M(2, \mathbb{R}) \mid A = \begin{bmatrix} a & a \\ a & a \end{bmatrix}\}$.
- **3.** Let *G* be a group.
 - (a) For $a, b \in G$, show that $(ab)^{-1} = b^{-1}a^{-1}$.
 - (b) If $(ab)^2 = a^2b^2$ for all $a, b \in G$, prove that G is abelian.
- 4. Let S_3 denote the symmetric group of degree 3. Prove that its centre $Z(S_3) = \{(1)\}$.
- 5. Let $\rho = (1234)(234)$ be a permutation in S_6 . What is ρ^{1001} ?
- 6. Prove that if G is a finite group of prime order, then G is cyclic.

7. Let G be a group and H be a subgroup of G. Show that

$$N_G(H) := \{g \in G \mid gH = Hg\}$$

is a subgroup of G.

Note: $N_G(H)$ is called the normalizer of H in G.

8. Show that every group with 4 elements must be abelian.