Math 3360 - Foundations of Algebra I Tutorial Assignment Sheet 1

1. Determine whether or not the following systems are groups:
(a) The set of rational numbers, \mathbb{Q}, with operation \star given by $a \star b=(a+b) / 2$.
(b) The set of non-zero rational numbers, \mathbb{Q}^{*}, with operation \star given by $a \star b=(a b) / 2$.
(c) The set of integers, \mathbb{Z}, under subtraction.
(d) The set $S:=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$ under multiplication.
2. Determine whether or not the following sets are groups under addition and/or under multiplication:
(a) The set $O(2, \mathbb{R}):=\left\{U \in G L(2, \mathbb{R}) \mid U^{-1}=U^{t}\right\}$.
(b) The set $S:=\left\{A \in M(2, \mathbb{R}) \left\lvert\, A=\left[\begin{array}{ll}a & a \\ a & a\end{array}\right]\right.\right\}$.
3. Let G be a group.
(a) For $a, b \in G$, show that $(a b)^{-1}=b^{-1} a^{-1}$.
(b) If $(a b)^{2}=a^{2} b^{2}$ for all $a, b \in G$, prove that G is abelian.
4. Let S_{3} denote the symmetric group of degree 3. Prove that its centre $Z\left(S_{3}\right)=\{(1)\}$.
5. Let $\rho=(1234)(234)$ be a permutation in S_{6}. What is ρ^{1001} ?
6. Prove that if G is a finite group of prime order, then G is cyclic.
7. Let G be a group and H be a subgroup of G. Show that

$$
N_{G}(H):=\{g \in G \mid g H=H g\}
$$

is a subgroup of G.
Note: $N_{G}(H)$ is called the normalizer of H in G.
8. Show that every group with 4 elements must be abelian.

